1、泊车辅助
泊车辅助也就是我们常说的倒车雷达,是汽车泊车或者倒车时的安全辅助装置,由超声波传感器(俗称探头)、控制器和显示器(或蜂鸣器)等部分组成。能以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除了驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除了视野死角和视线模糊的缺陷,提高驾驶的安全性。
倒车雷达探头装在后保险杠上,探头以大约45度角辐射,上下左右搜寻目标。它最大的好处是能探索到那些低于保险杠而司机从后窗难以看见的障碍物,并报警,如花坛、蹲在车后玩耍的小孩等。
挡位杆挂入倒挡时,倒车雷达自动开始工作,当探头侦测到后方物体时蜂鸣器发出警示,当车辆继续倒车时,警报声音的频率会逐渐加快,最后变为长鸣音。
2、ESP(电子稳定程序)
ESP对过度转向或不足转向特别敏感,它能够探测和分析车况并纠正驾驶的错误。例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。
车辆转弯行驶时,如
前轮首先达到抓地极限时,则会引起转向不足 ,此时驾驶员怎么打方向盘也不能减小转弯半径,为抑制前轮的侧滑,首先制动后轮,以产生向内旋转运动,然后对四个车轮制动,使车速降到某一水平,以平衡旋转运动,使转向在转弯力的范围内进行。
如果
后轮首先达到附着极限,则将造成甩尾现象 ,当出现后轮侧滑时,外前轮被制动,以产生向外旋转的运动,确保汽车的稳定性。
ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。
3、定速巡航
定速巡航用于控制汽车的定速行驶,汽车一旦被设定为巡航状态时,发动机的供油量便由电脑控制,电脑会根据道路状况和汽车的行驶阻力不断地调整供油量,使汽车始终保持在所设定的车速行驶,而无需操纵油门减轻了疲劳,同时减少了不必要的车速变化,可以节省燃料。一般情况下,当驾驶者踩下刹车踏板或离合器时定速巡航会被自动解除。 自适应巡航也称为主动巡航,其原理就是司机设定所希望的车速,系统利用低功率雷达或红外线光束得到前车的确切位置,如果发现前车减速或监测到新目标,系统就会发送执行信号给发动机或制动系统来降低车速使车辆和前车保持一个安全的行驶距离。当前方道路没车时又会加速恢复到设定的车速。
4、ABS(防抱死刹车系统)
“ABS”中文译为“防锁死刹车系统”.它是一种具有防滑、防锁死等优点的汽车安全控制系统。ABS是常规刹车装置基础上的改进型技术,可分机械式和电子式两种。现代汽车上大量安装防抱死制动系统,ABS既有普通制动系统的制动功能,又能防止车轮锁死,使汽车在制动状态下仍能转向,保证汽车的制动方向稳定性,防止产生侧滑和跑偏,是目前汽车上最先进、制动效果最佳的制动装置。
5、刹车辅助(EBA)
刹车辅助一般称为EBA或BAS,它的工作原理是传感器通过分辨驾驶员踩踏板的情况,识别并判断是否引入紧急刹车程序。由此该系统能立刻激发最大的刹车压力,以达到可能的最高的刹车效果,达到理想的制动效果以制止交通事故的发生。 当踩刹车时动作快、力量大时,BAS就判断驾驶者在紧急刹车并让ABS工作,迅速增大制动力。
6、牵引力控制系统(TCS)
牵引力控制系统Traction Control System,简称TCS,也称为ASR或TRC。它的作用是使汽车在各种行驶状况下都能获得最佳的牵引力。牵引力控制系统的控制装置检测4个车轮的速度和方向盘转向角,当汽车加速时,如果检测到驱动轮和非驱动轮转速差 过大,计算机立即判断驱动力过大,发出指令信号减少发动机的供油量,降低驱动力,从而减小驱动轮的滑转率。 计算机通过方向盘转角传感器掌握司机的转向意图,然后利用左右车轮速度传感器检测左右车轮速度差 ;从而判断汽车转向程度是否和司机的转向意图一样。如果检测出汽车转向不足(或过度转向),计算机立即判断驱动轮的驱动力过大,发出指令降低驱动力,以便实现司机的转向意图。 牵引力控制系统能防止车辆的雪地等湿滑路面上行驶时驱动轮的空转,使车辆能平稳地起步、加速。尤其在雪地或泥泞的路面,牵引力控制系统均能保证流畅的加速性能,防止车辆因驱动轮打滑而发生横移或甩尾。
7、上坡辅助/自动驻车
上坡辅助系统(Hill-start Assist ControL,HAC),它可让车辆在不适用手刹情况下在坡上起步时,右脚离开制动踏板车辆仍能继续保持制动几秒,这样便可为让驾驶者轻松的将脚由刹车踏板转向油门踏板,以防止溜车而造成事故,并且还不会让驾车者感到手忙脚乱。 自动驻车英文名称为AUTOHOLD,是一种自动替你拉手刹的功能,启动该功能之后,比如在停车等红绿灯的时候,就相当于不用拉手刹了,当驱动力大于行驶阻力时自动释放驻车制动,从而使汽车能够平稳起步。这个功能特别适应于上下坡以及频繁起步停车的时候。
8、制动力分配
上在刹车的时候,车辆四个车轮的刹车卡钳均会动作,以将车辆停下。但由于路面状况会有变异,加上减速时车辆重心的转移,四个车轮与地面间的抓地力将有所不同。传统的刹车系统会平均将刹车总泵的力量分配至四个车轮。从上述可知,这样的分配并不符合刹车力的使用效益。 EBD的功能就是在汽车制动的瞬间,高速计算出四个轮胎由于附着不同而导致的摩擦力数值,然后调整制动装置,使其按照设定的程序在运动中高速调整,达到制动力与摩擦力(牵引力)的匹配,以保证车辆的平稳和安全。当紧急刹车情况下,EBD在ABS动作之前就已经平衡了每一个轮的有效地面抓地力,可以防止出现甩尾和侧移,并缩短汽车制动距离。
9、陡坡缓降(HDC)
HDC(陡坡缓降系统):也被称为斜坡控制系统,这是一套用于下坡行驶的自动控制系统,在系统启动后,驾驶员无需踩制动踏板,车辆会自动以低速行驶(默认有三个时速:4km/h,6km/h,18km/h,也可以自行设定时速),并且能够逐个对超过安全转速的车轮施加制动力,从而保证车辆平稳下坡,此时制动踏板只是用于被动防止打滑。
10、涡轮增压发动机
发动机是靠气缸内外压力差而使外界空气自然吸入缸内形成可燃混合汽来运转的,所以自然进气模式又称为“自然吸气”。为了增大发动机功率和效率,又发明了新的进气方式,即增压进气,增压进气简单来讲就是在进气口前加装“增压风扇”通过风扇转动强制增大发动机进气量,空气进气量增大后喷油嘴根据化油器或电喷装置控制增大喷油量从而达到加大可燃混合汽浓度和燃烧度的效果来提高引擎动力。
涡轮增压发动机是依靠涡轮增压器来加大发动机进气量的一种发动机,涡轮增压器(Turbo)实际上就是一个空气压缩机。它是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内,叶轮就压缩由空气滤清器管道送来的新鲜空气,再送入气缸。一台发动机装上涡轮增压器后,其输出的最大功率与未装增压器相比,可增加大约40%甚至更多。
11、悬挂系统
悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。下面介绍两种悬挂类型:麦弗逊悬挂和双叉臂式悬挂。
(1)麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。它的缺点是对侧向不能提供足够的支撑力度,因此转向侧倾以及刹车点头现象比较明显。
麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预应力,转向节(也可说车轮,因为转向节作用于车轮)则沿着主销转动;此外,其主销可摆动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,且前轮定位变化小,拥有良好的行驶稳定性。
在麦弗逊式独立悬架中,支柱式减震器除具备减震效果外,还要担负起支撑车身的作用,所以它的结构必须紧凑且刚度足够,并且套上螺旋弹簧后还要能减震,而弹簧与减震器一起,构成了一个可以上下运动的滑柱。还有一个关键部件---A字型下摆臂,它的作用是为车轮提供横向支撑力,并能承受来自前后方向的预应力。车辆在运动过程中,车轮所承受的所有方向的冲击力量就要靠支柱减震器和A字型下托臂这两个部件承担。
(2)双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。
12、夜视系统
夜视系统也被称为红外线成像技术。其原理就是:任何物体都会散发热量,不同温度的物体散发的热量不同。人类、动物和行驶的车辆与周围环境相比散发的热量要多。夜视系统就能收集这些信息,然后转变成可视的图像,把本来在夜间看不清的物体清楚的呈现在眼前,增加夜间行车的安全性。
一般汽车等只能照射100m左右,而夜视系统至少可看到450m以外的路况信息,夜视系统是全天候的电子眼,在雨雪、浓雾天气公路上的物体及路旁的一切也都能尽收眼底。
13、变速箱类型
常见的变速箱有: 手动变速箱、CVT无级变速箱、双离合变速箱等。
1、手动变速箱:
输入轴(绿色)也叫第一轴,通过离合器和发动机相连,轴和上面的齿轮是一个硬连接的部件。红色齿轮轴叫做中间轴。输入轴和中间轴的两个齿轮是处于常啮合状态的,因此当输入轴旋转时就会带动中间轴的旋转。黄色则是输出轴,它也叫第二轴直接和驱动轴相连(只针对后轮驱动,前驱一般为两轴),再通过差速器来驱动汽车。
当车轮转动时同样会带着花键轴一起转动,此时,轴上的蓝色齿轮可以在花键轴上发生相对自由转动。因此,在发动机停止,而车轮仍在转动时,蓝色齿轮和中间轴出在静止状态,而花键轴则随车轮转动。这个原理和自行车后轴的飞轮很相似。蓝色齿轮和花键轴是由套筒来连接的,套筒随着花键轴转动,但同时也可以在花键轴上左右自由滑动来啮合齿轮。
一个传统的5速手动变速箱换挡的原理也是一样的,只是变速箱结构中增加了套筒和齿轮组的数目,使之拥有更多的挡位。而倒档则是通过在中间轴(红色)和输出轴(蓝色)之间增加一个齿轮来实现的。由于增加了一个啮合齿轮,因此倒挡的齿轮始终会朝其他齿轮相反的方向转动。这个齿轮由于只起到改变齿轮旋转方向的作用,因此也称为惰轮。